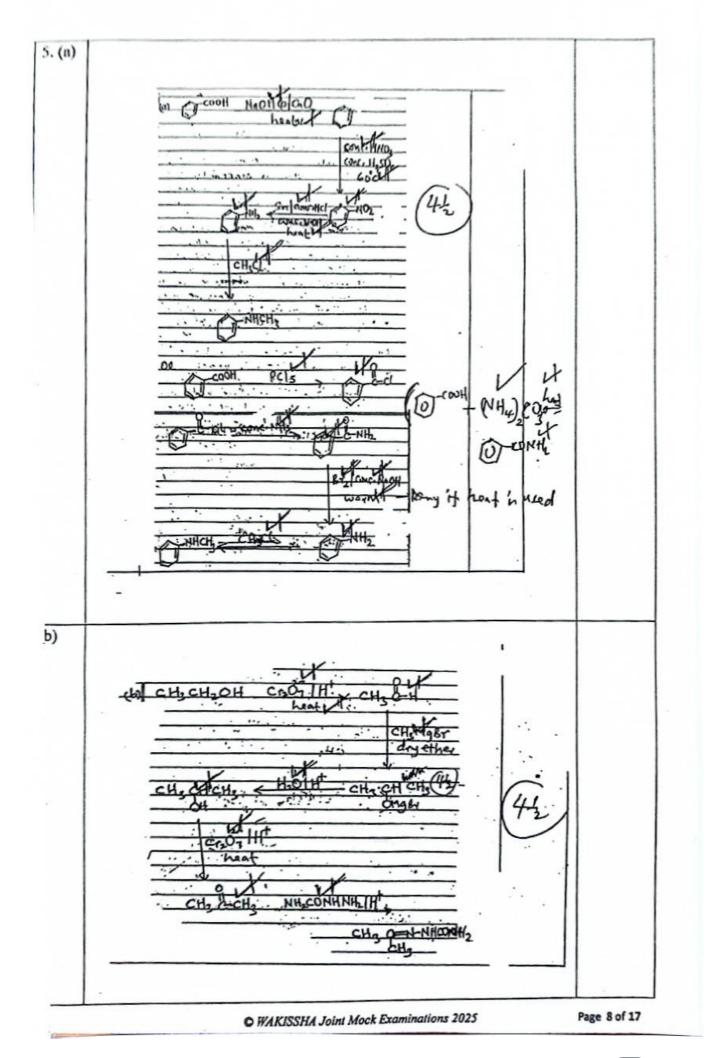

WAKISSHA JOINT MOCK EXAMINATIONS SCORING GUIDE

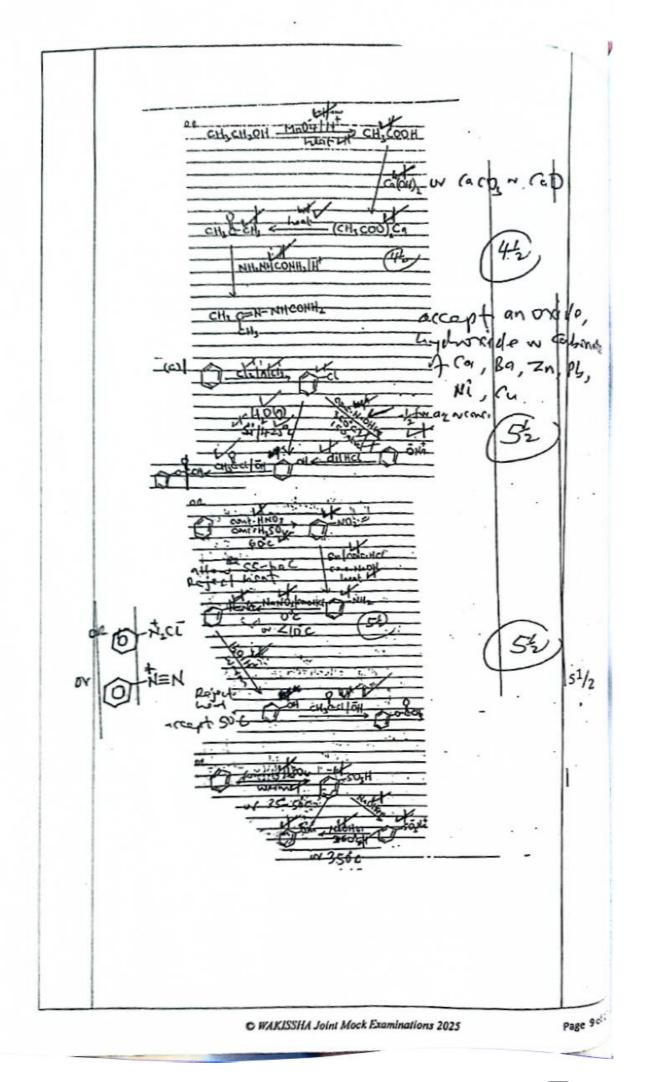
Uganda Certificate of Education

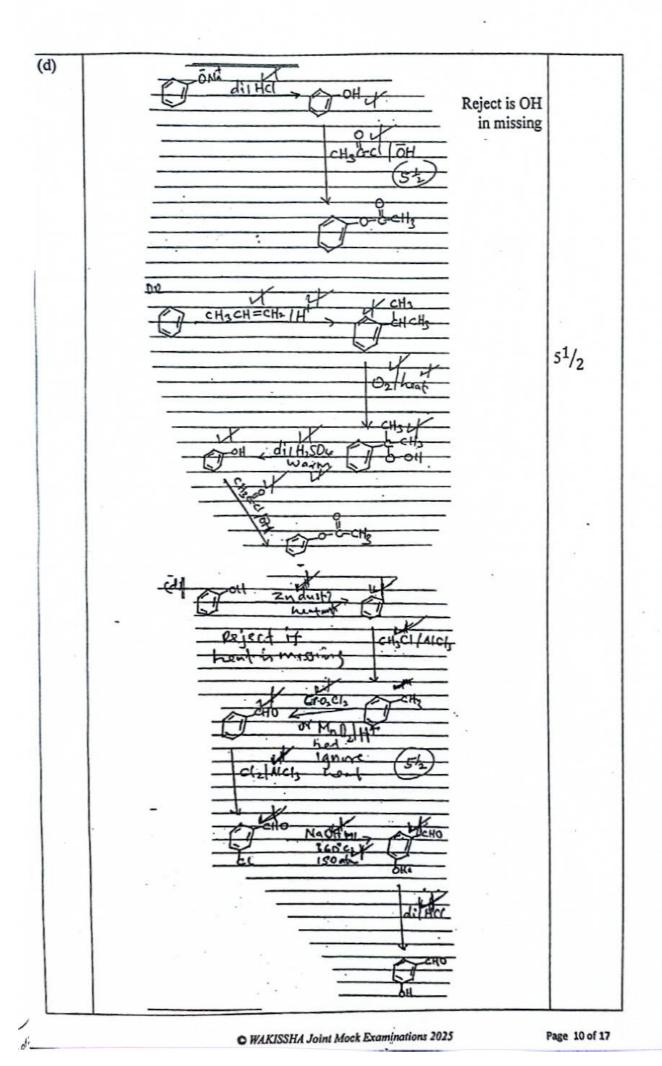
		_
1. (a)	Mass of carbon = $\frac{12}{44} \times 3.3 = 0.9g$	
(i)	Mass of hydrogen = $\frac{2}{18} \times 0.9 = 0.1g$	
	Mass of oxygen = $2.2 - (0.9 + 0.1) = 1.2$	
	с н о	
	Masses 0.9 0.1 1.2	
	Moles $\frac{0.9}{12}$ $\frac{0.1}{1}$ $\frac{1.2}{16}$	1
	0.075 0.1 0.075	3 %
		1 "
	Mole ratio 0.075 0.075 0.075 0.075	
	(1.1222.1) × 2	
	(1: 1.333 : 1) x 3	
	3:4:3	
	Empirical formula of W is C ₃ H ₄ O ₃	
(ii)	$Rmm = v.d \times 2$	
	= 44 x 2	
	= 88 - ½ for units given for Rmm	
	$(C_3H_4O_3)n = 88$	-
	$(12 \times 3 + 1 \times 4 + 16 \times 3)n = 88$	02
	= 88n = 88	02
	n = 1	
	molecular formula of W is C ₃ H ₄ O ₃	
(h)		
(b)	0 0	1/2
	H-C-CH, C-OH.	
(c)	3-oxopropanoic acid	_
	Red precipitate (Reddish brown precipitate	
	- P - P - 24: - =-!	
	H-E- C1/2 G-OH +2 Cu py +60How	11:
	5-6-CH26-0 (4) +	
	C4206 +4H2011	
		_
	C WAKISSHA Joint Mock Examinations 2025	Page 1
		5

	II ON THE STATE OF	
(iii)	Hooc CH CH HOOC CH CH NH	04 m
(e)	OR Sodalime Ho-CH2CH2	02 ma
	The state of the control of the cont	20 mi
2.(a) (i)	Rate law is an expression, or equation that provides a relationship between the rate of the reaction and the concentrations of the reactants raised to appropriate powers which are experimentally determined.	20 m ³
	Stoichiometric equation is one in which the number of atoms in one side is equal to the number of atoms in the other side of the equation. Or is a balanced equation.	01 m
(ii)	The rate will increase by 16 times. Reject the rate is increased by 16(sixteen)	02 m

(iii)	Rate		-				
(111)	$K = \frac{1}{\left[\text{Br O}_{3}^{+} \right] \left[\text{H}^{+} \right]^{2}}$	Br-]					
	1.5×10						21/2
	$=\frac{1.5 \times 10^{-2}}{(0.015)(0.02)^2}$						
	$=100mol^{-3}dm^9s^{-1}$			1/. f	or units i	niccina	
(b) (i)	Rate = $=$ K [CH ₃ (y if unit		01 mark
(b) (i) (ii)	Known volume of		dine of know				
()	in a flask / contain acid, a stop clock	er. On addit					06
	At regular time in pipetted into diffe carbonate solution	rent conical	flasks conta	ining excess	sodium l	nydrogen	
	The amount of loo by titrating the ne thiosulphate using	utralized mix	xtures with a				
	The volume of so directly proportion mixture.		•				
	A graph of volum straight line graph a zero-order react	with negati	thiosulphate ve slope is o	against time obtained an in	is plotte	d and a that it is	
		1					
	Volume	1			-	-	
	sadiuna - thìosulpha	te ·					
	(cv3)	+->	X		-		8
			/				
		-			$\overline{}$		
				_			
					\rightarrow		
			Ti	har (5)			
(c) (i)	Transactions.	555	(0)				
	Temperature T, K	555	606	645	714	769	
	1 T	0.0018	0.00165	0.00155	0.0014	0.0013	2 1/2
	Rate constant, k	3.72 x 10 ⁻	3.72 x 10 ⁻	3	0.111	0.819	2 1/2
	Log ₁₀ k	-4.43	-3.43	-2.27	-0.955	-0.087	
	Slope = $\frac{-4.5 - 10}{0.00181 - 10}$			2 dps for $\log \frac{1}{T}$	g ₁₀ K acce	ept at	
	= 78652.9	941					


O WAKISSHA Joint Mock Examinations 2025


Page 4 of 17


	± 50 -8702 - 8602	
	From $K = Ae^{\frac{R_a}{RT}}$	
	$\log_{10} K = \log_{10} A + \frac{-Ea}{RT} \log_{10}^{e}$	
	$\log_{10} K = \log_{10} A + \frac{-Ea}{2.303R} \times \frac{1}{T}$	
	$\therefore Slope = \frac{-Ea}{2.303R}$ $\frac{1}{2}$ for an units	
	- Ea : Deny for wrong units.	
	-8652.91 = 2.303×8.314	
	∴ Ea =165.679 KJmol ⁻¹	
	(see graph at the back) Accept Jmol ⁻¹	
		20 m
3. (a)	For germin 4S ² 4P ²	01 ma
	For lead 6S ² 6P ²	
(b) (i)		
	Carbon does not react with sodium hydroxide under any condition. Silicon and tin react with hot concentrated sodium hydroxide to form silicate (IV) and stannate (IV) respectively together with hydrogen gas.	04 1/2
	$Si_{(s)} + 2\overline{O}H_{(aq)} + H_2O_{(l)} \rightarrow SiO_3^{2-}_{(aq)} + 2H_{2(g)}$ $Sn_{(s)} + 2\overline{O}H_{(aq)} + H_2O_{(l)} \rightarrow SnO_3^{2-}_{(aq)} + 2H_{2(g)}$ $\frac{1}{2}$ for states wrong or missing	g
	OR Deny for only silicate or st	nnate.
	$Si_{(s)} + 2OH_{(aq)} + 4H_2O_{(l)} \rightarrow Si(OH)_{6(aq)}^{2-} + 2H_{2(g)}$	
	$Sn_{(s)} + 2\overline{O}H_{(aq)} + 4H_2O_{(l)} \rightarrow Sn(OH)_{6 \ (aq)}^{2-} + 2H_{2(g)}$	
(ii)	Carbon reacts with hot concentrated nitric acid to form <u>carbon dioxide</u> , <u>nitrogen dioxide</u> and (water:) $C_{(I)} + 4HNO_{3(eg)} \rightarrow CO_{2(g)} + 4NO_{2(g)} + 2H_2O_{(I)}$ Silicon does not react with nitric acid under any condition.	
	Tin reacts with hot concentrated nitric acid to form tin (IV) oxide, nitrogen dioxide and (water.) $Sn_{(s)} + 4HNO_{3(aq)} \rightarrow SnO_{2(s)} + 4NO_{2(g)} + 2H_2O_{(l)}$	03
(iii)	Carbon reacts with hot concentrated sulphuric acid to form <u>carbon dioxide</u> , sulphur <u>dioxide</u> and (water). $C_{(s)} + 2H_2SO_{4(l)} \rightarrow CO_{2(g)} + 2SO_{2(g)} + 2H_2O_{(l)}$	03
	Tin reacts with hot concentrated Sulphuric acid to form tin (IV)	
	O WAKISSHA Joint Mock Examinations 2025	Page Sol

	Sulphate, Sulphur dioxide and (water). $Sn_{(r)} + 4H_2SO_{4(l)} \rightarrow Sn(SO_4)_{2(oq)} + 2SO_{2(g)} + 4H_2O_{(l)}$ $\frac{1}{2}$ for states wrong or	missing
	Silicon does not react with Sulphuric acid under any condition.	
(c) (i)	Pb O 90.66 9.34 Moles $\frac{90.66}{207}$ $\frac{9.34}{.16}$ 0.43797 0.58375	03
	Mole ratio $\frac{0.43797}{0.43797}$ $\frac{0.58375}{0.43797}$ (1 : 1.333) x 3 3 : 4 Simplest formula of Q is Pb ₃ O ₄	03
ii)	Q reacts with hot concentrated Sulphuric acid to form lead (II) Sulphate oxygen gas and water. $Pb_3O_{4(s)} + 3H_2SO_{4(t)} \rightarrow 3PbSO_{4(s)} + \frac{1}{2}O_{2(g)} + 3H_2O_{(t)}$	
-	Q reacts with hol concentrated sodium hydroxide solution to form plumhate (II) and plumbate (IV) $Pb_3O_{4(s)} + 6\overline{O}H_{(aq)} \rightarrow 2PbO_2^{-2}{}_{(aq)} + PbO_{3(aq)}^{-2} + 3H_2O$ OR $Pb_3O_{4(s)} + 6\overline{O}H_{(aq)} + 4H_2O_{(aq)} \rightarrow 2Pb(OH)_{4(aq)}^{2-} + Pb(OH)_{6(aq)}^{2-}$	For both 51/2
		20 marks
.(a))	Vapour pressure is the pressure exerted by the vapour which is in (dynamic) equilibrium with its liquid.	
	Osmotic pressure is the pressure exerted on the solution to balance or prevent the movement of solvent molecules from a region of low solute concentration to a region of high solute concentration through a semi – permeable membrane.	02 marks
ii)	Vapour pressure decreases with increase in the concentration of a solution because the surface of the solution is occupied by many solute particles which prevent escape of solvent molecules into vapour phase and thus vapour pressure reduces.	
	Osmotic pressure increases with increase in concentration of the solution because increase in concentration increases the concentration gradient and thus the rate of diffusion of solvent molecules into the	03
	solution increases and thus osmotic pressure will also increase.	

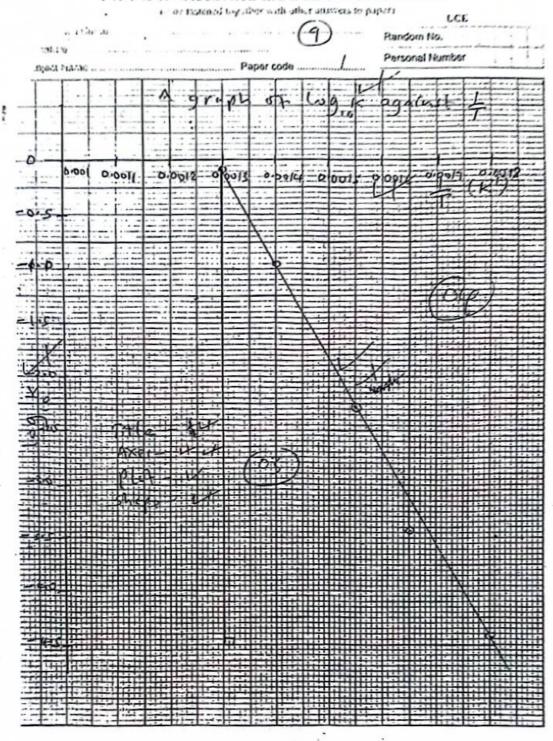
(ii)	Slope $=\frac{7.5-0.7}{123-12}$	
	$=\frac{6.8}{111}$	
	= 0.06126 ± 0.005 (0.05626 to 0.06626)	
	$slope \times 10^{-3} = \frac{RT}{Mr}$	
	$Mr = \frac{8.314 \times 298}{0.0616 \times 10^{-3}} = 40,443,552.073$	
	$(C_6H_{10}O_5)n = 40,443,552.073$	
	$(12 \times 6 + 1 \times 10 + 16 \times 5)n = 40,443,552.073$	3 1/2
	162n = 40,443,552.073	
(c)	n = 249,652 Deny if dps are used. A known mass of a solute is dissolved in a known volume of the solvent	
(0)	to form a solution of known concentration at a given temperature.	
	A pure solvent is placed in the inner tube until it reaches mark x in the capillary tube.	
	A solution is placed in the outer casing which is connected to the piston and pressure gauge.	05 marks
	A pressure is applied on the solution so that the level of the solvent is maintained at mark x in the capillary tube. The pressure applied is called osmotic pressure and is measured by the pressure gauge.	
(d)	Soluble starch has a very high relative molecular mass and since freezing point depression is inversely proportional to relative molecular mass, the freezing point depression would be too small to be measured by normal ordinary thermometers.	03 mark
	With osmotic pressure, any change in concentration would result into osmosis taking place and thus osmotic pressure would develop.	

	the molar conductivity of lead (II) bromide at infinite dilution	
	$\Lambda \infty PbBr_2 = \Lambda \infty Pb^{2+} + 2\Lambda \infty Br$	
	The solubility product determined as follows;	
	$\Lambda c = \frac{K}{C}$	
	Solubility of lead (II) bromide is very small.	
	But $\Lambda c \simeq \Lambda \infty$ since the solubility of lead (II) bromide is very small.	
		06 mark
	$C = \frac{K}{\Lambda \infty}$	
	$Pb Br_{2(s)} + aq \iff Pb^{2+}_{(aq)} + 2Br_{(aq)}$	
	c c 2c	
	$Ksp = [Pb^{2+}] [Br]^2$	
	$= c (2c)^2$	
	$= 4c^3 \text{ mol}^3 \text{ dm}^{-9}$ deny without correct units	
(c) (i)	RFM of PbBr ₂ = $207 + 80 \times 2$	
	= 367	
	$[PbBr_2] = \frac{7.84}{367}$	
	= 0.02136 moldm ⁻³	
6(a)	Solubility product is the product of the molar concentration of the ions	
(i)	of a sparingly soluble electrolyte (salt) raised to appropriate powers in a	01
	saturated solution at a given temperature.	
(ii)	Reject compound or substance Common ion effect is the precipitation of a sparingly soluble salt from	
(11)	its saturated solution on addition of a more soluble compound with one	01
	ion common to both at a given temperature.	
(b)	Excess of solid lead (II) bromide is mixed with a known volume of	
	distilled water in a flask. The flask is stoppered and the mixture shaken	
	vigorously for some time until equilibrium is attained at room temperature.	
	Deny ¹ / ₂ for room temperature missing	3 1/2
	The mixture is filtered to obtain a filtrate which is a saturated solution	
	of lead (ii) bromide.	
	The electrolytic conductivity of the saturated solution is measured using	
	a conductivity meter.	
	The electrolytic conductivity of pure water is determined using the same	
	meter. Ksolution = Ksolute + Kwater	
	The molar conductivity of lead (II) ions and bromide ions at infinite	
	dilution are obtained from the data book and are used to determine	
	solubility of	
	$PbBr_2 = 367 \times 0.006980$ = 2.5618 gdm ⁻³	
	- 2.3016 gain	
	Mass of lead (II) bromide that precipitated	
	= 7.84 - 2.5618	
	= 5.2782 g	

	Let y be the solubility of PbBr₂ in 0.1M NaBr.	
	Pb Br _{2 (s)} + aq \rightleftharpoons Pb ²⁺ (aq) + 2Br (aq)	
	y y 2y	
-	$Na Br_{(aq)} \rightarrow Na^{+}_{(aq)} + Br_{(aq)}$	
	0.1M 0.1M 0.1M	
	$[Pb^{2+}] = y$	31/2 marks
- 1	[Br] = 2y + 0.1	
	≈ 0.1 M since y <<< 0.1	
-	$3.891 \times 10^{-5} = y(0.1)^2$	
-	$y = \frac{3.8981 \times 10^{-5}}{3.001}$	
-	0.01	
-	$= 3.8981 \times 10^{-3}$	
1	Mass of PbBr ₂ that dissolved = $3.8981 \times 10^{-5} \times 367$	
1	= 1.4306g accept 2dp	
- 1		
-		
-		
	$Pb Br_{2(s)} + aq \rightleftharpoons Pb^{2+}_{(aq)} + 2Br_{(aq)}$	
- 1	c c 2c	
	$Ksp = [Pb^{2+}][Br^{-}]^{2}$	
	$= c (2c)^2$ = $4c^3$	
- 1	$=4 \times (0.02136)^3$	
	= 3.8981 x 10 ⁻⁵ mol ³ dm ⁻	
1	•	
	$Pb Br2 (s) + aq \Rightarrow Pb2+(aq) + 2Br(aq)$	
12	x x 2x	
١,	$Pb(NO_3)_{2(aq)} \rightarrow Pb^{2+}_{(aq)} + 2 NO_{3(aq)}^{-}$	31/2 mark
	0.2M 0.4M	
-1	U.LIVI U.LIVI	
	$[Pb^{2+}] = x + 0.2$	
-	[Br] = 2x	
1	Since $x \ll 0.2$	
,	$x + 0.2 \simeq 0.2$	
1	$[Pb^{2+}] = 0.2 \text{moldm}^{-3}$	
1	$Ksp = [Pb^{2+}][Br^{-}]^{2}$	
1	$3.891 \times 10^{-5} = (0.2) (2x)^2$	
	x = 0.00698	
1	% of PbBr ₂ that dissolved = $\frac{1.4306}{5.0}$ x 100	
	= 28.612%	

(d) (i)	The solubility increases because nitric acid oxidises bromide ions to bromine.	
	$2Br^*_{(aq)} + 4H^*_{(aq)} + 2NO^*_{3(aq)} \rightarrow Br_{2(g)} + 2NO_{2(g)} + 2H_2O_{(f)}$ The concentration of beautier in the solution reduces and more lead	02 2
	The concentration of bromide ions in the solution reduces and more lead (II) bromide <u>dissolves</u> to restore the equilibrium such that the Ksp is maintained.	-
(ii)	The solubility increases because Magnesium ribbon reduces lead (II) ions to lead metal. $Pb^{2+}_{(aq)} + Mg_{(s)} \rightarrow Pb_{(s)} + Mg^{2+}_{(aq)}$	021
	The concentration of lead (II) ions in the solution reduces and thus more lead (II) bromide dissolves to restore the lead (II) ion concentration such that the Ksp is maintained.	
(e)	- Salting out of soap - Purification of common salt - Use of potassium chromate as an indicator Qualitative analysis.	01 🖂
		20 mi
7(a)	Benzoic acid has a benzene ring which exerts a negative inductive effect due to delocalized pi electrons.	
	The oxygen – hydrogen bond of the carboxyl group is weakened and thus can easily break and an aqueous solution of benzoic acid has a relatively high concentration of hydrogen ions.	04 ==
	In ethanoic acid, the methyl group exerts a positive inductive effect and thus strengthens the oxygen – hydrogen bond of the carboxyl group and thus cannot easily break and the aqueous solution of ethanoic acid has a relatively low concentration of hydrogen ions.	
(b)	Fluorine atom has only one isotope while chlorine atom has two isotopes of chlorine - 35 and chlorine - 37.	
	Due to Isotopic combination, Chlorine molecule has three relative molecular masses and this gives rise to three peaks in the mass spectrum unlike fluorine which has one relative molecular mass and thus one peak.	03==
(c)	Propene has a localized carbon to carbon double bond which is a centre of high electron density and thus is attacked by electron deficient species to form a single product.	
	CH3CH=CH2 CH3CH CH3	
	- CC	2 ¹ / ₂ 05 n
	CH, CHCH3	

	In propanone, the carbonyl functional group is polar with oxygen being more electronegative than carbon and thus pulls bonding electrons towards itself, creating partial negative charge on oxygen. The partially positive carbon is attacked by electron rich species to from a single product. CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3	21/2
	- ZN - ZH3 CK	
(d)	Fluorine atom has a much smaller atomic radius than Chlorine atom. In fluorine molecule, the Ione pairs of electrons are closer to each other and thus exerts stronger repulsion and this weakens the fluorine bond and thus can easily break.	03 marks
	In Chlorine molecule, the Ione pairs of electrons on the Chlorine atoms are far apart and thus exert less repulsion and the Chlorine – chlorine bond is relatively strong and thus cannot easily break.	
(e)	Carbon dioxide partially Ionise in aqueous solution to form hydrogen ions which take part in the disproportionation of maganate (VI) ions to form Manganate (VII) ions and insoluble manganese (IV) oxide. $3MnO_{4\ (qq)}^{2} + 2CO_{2(qq)} \rightarrow 2MnO_{4\ (qq)}^{2} + MnO_{2(qq)} + 2CO_{3\ (qq)}^{2}$ $OR_{2}CO_{2(q)} + H_{2}O_{(l)} \rightleftharpoons H_{(qq)}^{+} + HCO_{3(qq)}^{-}$	04 marks
	$=3MNO_{4(aq)}^{2} + 4H_{(aq)}^{+} \rightarrow 2MnO_{4(aq)}^{-} + MnO_{2(s)} + 2H_{2}O_{(l)}$	20 montes
		01mark
(a)	Ore is a naturally occurring mineral from which a metal is extracted. Or Is a naturally occurring rock from which a metal is extracted.	01 mark
)	Copper Pyrites Reject pyrite or form ½	½ mark
;)	Copper Pyrites are crushed into powder and mixed with water containing a frothing agent such as pine oil. Air is blown into the mixture from agitation. The earthly impurities are welted and sink to the bottom. The ore particles are attracted to the frothing agent and floats on top and can be skimmed off. Dilute sulphuric acid is added to break the froth. The ore is filtered washed is roasted.	71/2 marks
	The ore is roasted in a calculated amount of air to form copper (I)	


© WAKISSHA Joint Mock Examinations 2025

Page 14 of 17

	2Cultethus + 4Ong -, Cushin + 2FeO + 3NOng	
	Silicon (IV) oxide is added and the mixture <u>heated</u> in the absence of to form <u>Iron (II) silicate</u> in liquid state and can be poured off. The resulting product which is Copper (I) Sulphide is further resulted a limited amount of air to form Copper (I) oxide and Sulphur dioxide 2Cu ₂ S _(a) + 3O _{2(a)} → 2Cu ₂ O _(a) + 2SO _{2(a)}	i.
	The copper (i) oxide and un reacted copper(i) Sulphide are heated together in the absence of air to form impure copper and Sulphur dioxide. 2Cu ₂ O _(s) + Cu ₂ S _(s) → 6Cu ₆ + SO _{2(s)}	
	The impure copper is purified by electrolysis where the impure copper is made the anode and pure copper is made the cathode and the electrolyte is Copper (II) Sulphate solution.	
	When current is passed through he electrolyte, impure copper anode dissolves to form copper (II) ions and copper (II) ions are discharged at the cathode and pure copper is deposited on the cathode.	
	At the anode: $Cu_{(3)} \rightarrow Cu^{2*}_{(34)} + 2e$ At the cathode: $Cu^{2*}_{(34)} + 2e \rightarrow Cu_{(3)}$	
d(i)	Copper reacts with hot concentrated sulphuric acid to form copper (II) sulphate, sulphur dioxide and (water.) Cu _(s) + 2H ₂ SO _{4(l)} → CuSO _{4(kl)} + SO _{2(g)} + 2H ₂ O _(l) =1/ ₂ -for states wrong or missing	03 maric
(ii)	Copper reacts with moderately concentrated nitric acid to form copper (II) nitrate, nitrogen monoxide and water. 3Cu(s) + 8HNO _{3(sq)} → 3Cu(NO ₃) _{2(sq)} + 2NO _(g) + 4H ₂ O _(f)	04 marks
	Copper reacts with hot concentrated nitric acid to form copper (II) nitrate, nitrogen dioxide and water. Cu _(s) + 4HNO _{3(sq)} → Cu(NO ₃) _{2(sq)} + 2NO _{2(g)} + 2H ₂ O _(f)	
(e)(i)	Dark brown precipitate formed $2Cu^{2+}_{(aq)} + Fe(CN)^{4-}_{6(aq)} \rightarrow Cu_2Fe(CN)_{6(s)}$	02 marks
(ii)	White precipitate in a brown solution. 2Cu ²⁺ (sq) + 4I ⁻ (sq) → Cu ₂ I _{2(s)} + I _{2(sq)}	02 marks
	= ½ for states wrong or missing	
		20 marks

CLANDA NATIONAL EXAMINATIONS BOARD

COANDA NATIONAL LA Abbanda de Control (To be fastened together and the contract subject Name

END

© WAKISSHA Joint Mock Examinations 2025

Page 17

